Sediment Formation, Transport and
Deposition

Mountain headwater streams
flow swiftly down steep
. slopes and cut a deep
V-shapgd valley. Low-elevation streams
Rapids and merge and flow down
waterfalls are gentler slopes. The
common. valley broadens and
the river begins to
meander.

At an even lower
elevation a river wanders
and meanders slowly
across a broad, nearly flat

valley. At its mouth it may
divide into many separate
channels as it flows across
a delta built up of river-
borne sediments and into
the sea.
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Sediment Formation, Transport and
Deposition

 Sediment Formation — Weathering

e Soil Erosion

e Stream Flow and Sediment Transport

e Deltas - Where Rivers Meet the Sea

e Estuarine Sediment Transport & Deposition
e Coastal Processes and Inlets




Weathering

Breakdown of Rock to Form Sediment

Mechanical Weathering — Physical abrasion due to the
action of:
— Water (streams, rivers and surf)
— Ice (frost, snow and glaciers)
— Wind
Chemical Weathering — Minerals formed deep in the
earth’s interior are not stable under surface conditions.
o Stability Is reverse of Bowen’s reaction series

 The principle agent of chemical weathering is water
— Quartz: very stable
— Feldspars: form clay minerals
— Mafic minerals: alter to oxides
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Chemical Weathering

Etched
and
corroded
-~ feldspar
7
8 in the
soil zone

Silicate minerals
weather by hydrolysis
to form clay

*Feldspars are stable at
high temperatures and
pressures (not at earth’s
surface)

*Clays are stable under
conditions at the earth’s
surface



Clay Minerals

*Size (microns) and Shape
(platelet) result in transport
over great distances with
minimal current velocity

«Cation Exchange Capacity

(Surface Electrical Charge)

results in contaminant

transport potential and
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Sediment and Solil Classifications
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Soil Erosion

Erosion/Physical Process

Mass Combination

Wasting

Concentrated
Flow

Erosion Type

Sheet and rill
Interill

Rill

Wind

Ephemeral gully
Classic gully
Floodplain scour
Roadside
Streambank
Streambed
Landslide
Wave/shoreline
Urban, construction

Surface mine

Ice gouging

Table 2.3 -- Erosion types vs. physical processes.
In Stream Corridor Restoration: Principles, Processes, and Practices (10/98)
by the Federal Interagency Stream Restoration Working Group (FISRWG) (15 Federal agencics of the U.S.)



Soil Erosion

Estimated Average Annual Sheet and Rill
Erosion on Nonfederal Land

Tons/Ac/Yr

1982 1987 1992 1997




Stream Flow and Sediment
Transport

sediment size stream slope

From Rosgen (1996), from Lane, Proceedings, 1955.
Published with the permission of American Society of Civil Engineers.

Fig. 1.13 — Factors afTecting channe] degradation and agpradation: Concepl of "Stream Balance.".
In Stream Corridor Restoration: Prineiples, Processes, and Practices, 10/98.
Interagency Stream Restoration Working Group (15 Federal Agencies of the US).
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|[ffezheim: the downstream-most dam




“Feeding” the Rhine




Deltas — Where Rivers Meet the Sea




e
’4"‘ l”‘
N w

Seguence of Holocene Mississippl Delta Lobes
/&

‘N-
% '//Af —errTTTTY.—_

g LT

Z “HH't lq”
i g ll“ﬁ
(=)

LEGEND

BXE| sac¢-cveremort T

LAFOURCHE

@ | cocoorie EE| pLaQUEMINES SEALE
HEGH| TecHE B eavize 0 0 0 20 0u

(MEET st semNARD

i i il
- Chronologic sequence of Holocene Mississippi Delta lobes (from Kolb and Van Lopik, 1966}




Deltaic Evolutionary Stages SrAEeEEE
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Estuarine Sediment Processe

River forces vs.
Tidal Forces
with

Waves

\Wilgle
Geologic setting

Estuary

sea water

fresh water
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Salt Water and Fresh Water
—(saltwedge and estuaries)

river input
bay (maybe)
open ocean

fresh water BT R salt water




Estuary Schematic
<4 River

Plan view

Profile View
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Estuarine Hydro Forcing

Rainfall, evaporation, local runoff,
groundwater inflow/outflow, point discharges

surges
(salt water)
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Coastal Processes — Longshore
Transport

L




~
)
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Inlet Morphology

Barrier
Island

Terminal Lobe

Channel Margin
Linear Bars

Flood Shoal g

Island
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Scour and Shoaling at Inlets
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Take Home

* Not all sediments are likely to be contaminated.
 Natural sediment systems are highly dynamic.

e Sound sediment management practices require
an understanding of these dynamic sediment
transport processes.




